

#### **JAW-FLEX COUPLING**

#### **GENERAL**

- I) Standard features of Jaw-Flex Couplings (Pg. 1)
- II) Detail knowledge of this Operating Instructions will ensure trouble free operation of the Jaw-Flex Coupling. Persons responsible for handling, installation & use of the coupling shall required & understand these Operating Instructions.



**ATTENTION** This coupling is suitable for applications in stationery/mobile use in engineering industry.

The copyright of these Operating Instructions remains the property of AROFLEX

For all technical queries please contact -

#### Arrow Engineering Components Ltd

72 Liverpool Street SALFORD M5 4LT Tel: 0161 737 6969 Fax: 0161 925 1570 E-Mail: couplings@arrowengineering.com

## <u>INDEX</u>

| <u>CONTENTS</u>                                              | PAGE  |
|--------------------------------------------------------------|-------|
| Standard Features                                            | 1     |
| At a Glance                                                  | 2     |
| JAW-FLEX Family                                              | 3     |
| Elastomer Information                                        | 4     |
| <ul> <li>Standard Material of Construction</li> </ul>        | 5     |
| <ul> <li>Special features of various types</li> </ul>        | 6-8   |
| <ul> <li>Constructional details of various types</li> </ul>  | 12    |
| <ul> <li>Features of Conversion of RRS-SW-L</li> </ul>       | 13-14 |
| <ul> <li>Ratings for Standard JAW-FLEX coupling</li> </ul>   | 15    |
| <ul> <li>Weight &amp; M.I. for JAW-FLEX coupling</li> </ul>  | 16-21 |
| <ul> <li>Application of JAW-FLEX coupling</li> </ul>         | 22    |
| <ul> <li>How to select JAW-FLEX coupling</li> </ul>          | 23-25 |
| <ul> <li>Procedure for Finish Bore &amp; Keyway</li> </ul>   | 26-27 |
| • Fit Tolerance Guide lines For Bores with Parallel Ke       | ey 28 |
| <ul> <li>Standard tolerances for FBKW</li> </ul>             | 29    |
| <ul> <li>Installation &amp; Assembly instructions</li> </ul> | 30-41 |

#### JAW-FLEX COUPLING

#### STANDARD FEATURES

- Simple in construction
- No need of lubrication
- Low initial & operational cost
- Provides torsional vibration isolation and damping
- No metal to metal contact, hence electrically insulated
- Endures momentary overload or overspeed
- Easy to assemble and dismantle (even without disturbing shafts)
- Permits angular, axial, parallel or combination of these misalignments
- All metal parts are coated with anti-corrossive agents
- Can be modified as per customer's specific requirement



#### JAW-FLEX COUPLING

JAW-FLEX FAMILY

• Basic Types - L/SW, H, HR

• Application wise -

| : SWQ, RRS, SWS, HC    |
|------------------------|
| LF, SWF, HF, HRF, SWSF |
| LD, SWD, HD, HRD       |
| : LS, SWSH, HS, HRS    |
|                        |

Other combinations are available on request.

e.g. Flange with spacer type Flange with shear pin type

| Туре           | Sizes available |  |  |
|----------------|-----------------|--|--|
| L              | 030 to 350      |  |  |
| L/SW           | 095 to 350      |  |  |
| RRS            | 095 to 226      |  |  |
| SWQ            | 095 to 350      |  |  |
| SWS/SWSF       | 226 to 350      |  |  |
| LF/SWF         | 095 to 350      |  |  |
| LD             | 095 to 226      |  |  |
| SWD            | 276 to 350      |  |  |
| LS/SWSH*       | 100 to 350      |  |  |
| H/HF/HD/HS     | 3067 to 3667    |  |  |
| HQ             | 3067 to 9011    |  |  |
| HR/HRF/HRD/HRS | 4067 to 9011    |  |  |

\* SWSH: SW coupling with Shear pin

#### JAW-FLEX COUPLING

#### ELASTOMER INFORMATION

- AROFLEX is the only manufacturer, which produces its own rubber elements in a whole range of compounds, by conducting specific research and development into rubber engineering technology.
- By combining the benefits of this technology with mechanical expertise we can optimise power transmission solutions.
- Full laboratory control and a wide range of specialised equipments ensure high quality and consistency in product performance.
- Specialised compounds can be developed in our laboratories to meet specific requirements.

| Sr.<br>No. | Type of Elastomer<br>Criteria | Nitrile                           | High<br>Strength<br>Nitrile                   | Neoprene                            | Poly-urethance                                     | Silicone                                                           | Viton                                       | Polyacrylic                                      |
|------------|-------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|
| 1          | Temperature (° C)             |                                   |                                               |                                     |                                                    |                                                                    |                                             |                                                  |
|            | Working                       | 100                               | 100                                           | 100                                 | 100                                                | 100 to 200                                                         | 200                                         | 170                                              |
|            | Intermittent                  | 120                               | 120                                           | 120                                 | 110                                                | 300                                                                | 250                                         | 200                                              |
| 2          | Resistant to                  |                                   |                                               |                                     |                                                    |                                                                    |                                             |                                                  |
|            | Grease, Oils                  | Good                              | Good                                          | Good                                | Very Good                                          | Poor                                                               | Excellent                                   | Very Good                                        |
|            | Chemicals                     | Fair                              | Fair                                          | Fair                                | Fair                                               | Good                                                               | Very Good                                   | Good                                             |
|            | Abrasion                      | Good                              | Very Good                                     | Good                                | Excellent                                          | Poor                                                               | Good                                        | Good                                             |
|            | Hot Water                     | Good                              | Good                                          | Good                                | Poor                                               | Excellent                                                          | Excellent                                   | Good                                             |
| 3          | Insulation (° C)              | Good                              | Good                                          | Good                                | Good                                               | Excellent                                                          | Good                                        | Good                                             |
| 4          | Shore Hardness 'A'            | 80 ±5                             | 90 ±5                                         | 80 ±5                               | 90 ±5                                              | 70 ±5                                                              | 80 ±5                                       | 80 ±5                                            |
| 5          | Torsional Rigidity            | Soft                              | Medium                                        | Medium                              | Rigid                                              | Soft                                                               | Medium                                      | Medium                                           |
| 6          | Torque Carrying Capacity      | Good                              | Very Good                                     | Good                                | Excellent                                          | Fair                                                               | Good                                        | Good                                             |
| 7          | Application                   | For all<br>normal<br>applications | High torque<br>& low<br>speed<br>applications | Resistant to<br>Ozone<br>atmosphere | Very high<br>torque & low<br>speed<br>applications | If working<br>temp. is<br>100° to 200°<br>C & no oil is<br>present | High<br>working<br>temp. & oil<br>resistant | Working<br>temp. 150°<br>& oil upto<br>resistant |

#### Recommended Elastomers for Jaw-flex Coupling

## JAW-FLEX COUPLING

## STD. MATERIAL OF CONSTRUCTION

| Component        | Туре                | Size         | Material                 |
|------------------|---------------------|--------------|--------------------------|
|                  | L                   | 030 to 075   | Sintered Iron            |
|                  | L                   | 050 to 110   | Aluminium                |
| Hub / Adapter    | L/SW/RRS/SWQ/TL     | 095 to 225   | CI BS 1452-61 Gr. 12     |
|                  | L/SW/SWQ/TL/RRS-226 | 226 to 350   | CI BS 1452-61 Gr. 14     |
|                  | H/TH/HR/HQ          | 3067 to 9011 | CI BS 1452-61 Gr. 17     |
|                  | RRS                 | 095 to 226   | Aluminium                |
| Spacer           | SWQ                 | 095 to 225   | CI BS 1452-61 Gr. 12     |
| Jaw Body         | SWQ                 | 226 to 350   | CI BS 1452-61 Gr. 14     |
|                  | HQ/HR               | 3067 to 9011 | CI BS 1452-61 Gr. 17     |
| Spacer or Flange | SWS/SWSF            | 226 to 350   | BS 970 070 M20/M.S.      |
|                  | SW/SWQ/TSW          | 095 to 350   |                          |
| Outside Ring     | RRS                 | 095 to 226   | BS 970 070 M20/M.S.      |
|                  | H/TH/HQ/HR          | 3067 to 9011 |                          |
| Inside Ring      | H/TH/HQ/HR          | 3067 to 9011 | BS 970 070 M20/M.S.      |
| Chiesel Head     | SW/SWQ/TSW          | 095 to 350   | Stainless Steel AISI 304 |
| Screws           | RRS                 | 095 to 226   |                          |
|                  | H/TH                | 3067 to 3667 |                          |
| Hex Head Screw   | SWQ/SWS             | 226 to 350   | High Tensile Steel       |
|                  | HR                  | 4067 to 9011 | BS 1083 Gr. 10.9         |
|                  | HQ                  | 3067 to 7069 |                          |
| Spider           | L                   | 030 to 350   |                          |
| Snapwrap         | SW/TSW/RRS/SWQ      | 095 to 225   |                          |
| 'T' Cushion      | SW/TSW/SWQ/RRS-226  | 226 to 350   | Nitrile Rubber           |
| Cushion          | H/HQ/HR             | 3067 to 9011 |                          |

#### JAW-FLEX COUPLING

#### SPECIAL FEATURES OF VARIOUS TYPES OF

#### JAW-FLEX COUPLING

A. L TYPE (Refer fig. 1)

- Simple in construction. Consists of two hubs & a spider.
- Every other spider arm is an idler arm and can be advanced to load carrier jaws. Hence it functions as a spare spider in every coupling.
- Spiders can be provided of various materials with different shore hardness to meet application requirement.
- Couplings can be supplied with taper bushes (ref. fig. 2)

B. SW TYPE (Refer fig. 3)

- Replacement / inspection of elastomeric member (i.e. snapwrap) done without disturbing existing alignment.
- Less down time & easy for replacement of snapwrap.
- Couplings can be supplied with taper bushes (ref. fig. 4)

C.RRS TYPE (Refer fig. 8)

- Spacer type coupling and is simple in construction.
- Use of Aluminium spacer gives advantage of lightweight coupling & lower MI.
- Spacer can be dropped out very easily without bolt extraction problems.
- Use of two elastomeric members gives double misalignment capacity, flexibility & smoother power transmission.
- Easy for visual inspection / replacement of snapwrap. Hence less down time.
- Low inventory cost as no need to stock all parts due to interchangeability with L/SW couplings.

D.H TYPE (Refer fig. 5)

- Ratings are higher than L/SW type, hence used for heavy duty application.
- Individual free floating load cushions held in place by outside ring.
- Easy to assemble & dismantle.
- Cushions easily inspected at all times.
- Couplings can be supplied with taper bushes (ref. fig. 7)

#### JAW-FLEX COUPLING

- E. HR TYPE (Refer fig. 6)
- Higher in rating than L/SW, H type.
- Fixed spacer length type coupling helps to provide independent running requirement.
- Less down time of replacement of cushions and rapid disconnection without disturbing existing alignment.
- F. SWQ TYPE (Refer fig. 9)
- Spacer type coupling using snapwrap / T cushions as flexible elements.
- Snapwraps are available from SWQ-095 to SWQ-225 sizes and T cushions are available from SWQ-226 to SWQ-350 sizes.
- Individual replacement of T cushion reduces replacement cost.
- Used where rapid disconnection without disturbing the drive or driven unit is required.
- G. HQ TYPE (Refer fig. 10)
- Spacer type coupling using cushions as flexible elements.
- Individual replacement of cushions reduces replacement cost.
- Used where rapid disconnection without disturbing the drive or driven unit is required.
- H.SWS TYPE (Refer fig. 11)
- Modified Jaw type spacer coupling for back pull out pump & motor.
- Comparatively light in weight.
- Suitable for horizontal & vertical application.
- Low inventory cost.
- I. SWSF TYPE (Refer fig. 12)
- Modified Jaw type spacer coupling for diesel engine & back pull out pump.
- Uses std. SAE flanges, which can accommodate different sizes of couplings.
- Suitable for high speed application.
- Std. SWS coupling can be converted into flange connection.
- J. DRUM TYPE COUPLING (Refer fig. 13, 14) (LD/SWD/HD/HRD)
- Used in applications where braking is required. Brake shoes applies braking force on drum provided with coupling eg. conveyors, elevators, etc.

#### JAW-FLEX COUPLING

Drums are provided in two types.
 Integral drum - 095 to 226
 Fabricated drum - 276 & above

Drums are available in C.I./M.S./C.S.

- K. FLANGE TYPE COUPLING (Refer fig. 15, 16) (LF/SWF/HF/HRF/SWSF)
- Used for connecting coupling in engine driven applications e.g. generators, fire fighting pumps, etc.
- Flanges are available in two types.
  - Integral with coupling hub/adapter
  - Bolted with coupling hub/adapter
- Std. SAE flanges are available. Non standard flanges can be given on request.
- Integral flanges are available in C.I./C.S.
- Bolted type flanges are available in M.S.
- L. SHEAR PIN TYPE COUPLING (Refer fig. 17) (LS/SWSH/HS/HRS)
- Used in limited torque applications e.g. torque transmission is to be stopped at some specified torque given by user.
- Protects equipment from damaging in case of overload.
- Shear pins can be replaced easily hence less down time.
- M. LQ TYPE (Refer fig. 18)
- Spacer type coupling using spider as a flexible element.
- Rapid disconnection without disturbing the drive or driven unit.

## AROFLEX<sup>®</sup> **JAW-FLEX COUPLING** CONSTRUCTION DETAILS OF VARIOUS TYPES FIG.NO.1 FIG.NO.2 $(\overline{3})$ 2 2 1 TYPE - L ASSLY. TYPE - TL ASSLY. FIG.NO.3 FIG.NO.4 (17)6) $\overline{(3)}$ (1)(6) $\langle 4 \rangle$ $\langle 4 \rangle$ (1)5 TYPE - SW ASSLY. TYPE - TSW ASSLY. FIG.NO.5 FIG.NO.6 $\langle 11 \rangle$ (12)(9 (8) 8 (13)-(7 (14) TYPE - HR ASSLY. TYPE - H ASSLY.



## AROFLEX<sup>®</sup>

#### **JAW-FLEX COUPLING**

CONSTRUCTION DETAILS OF VARIOUS TYPES

FIG.N0.11





TYPE - SWS ASSLY.



FIG.NO.13



TYPE - LD ASSLY.

FIG.NO.14



TYPE - SWD ASSLY.

#### **JAW-FLEX COUPLING**

## CONSTRUCTION DETAILS OF VARIOUS TYPES

FIG.N0.15



TYPE - LF ASSLY.



 $\frac{\text{FIG.NO.17}}{2}$ 

FIG.NO.18



 $\underline{\mathrm{TYPE}\ }-\ \underline{\mathrm{LQ}\ }\mathrm{ASSLY}.$ 

| 1) Hub               | 12) Adapter 2                | 23) Integral Drum            |
|----------------------|------------------------------|------------------------------|
| 2) Spider            | 13) Spacer                   | 24) Hub 'L'                  |
| 3) Taper Bush        | 14) Hex Head Bolt            | 25) Fabricated Drum          |
| 4) 'SW' Ring         | 15) Hub 'H'                  | 26) Adapter                  |
| 5) Chease Head Screw | 16) Hub 'F'                  | 27) Integral Flange Jaw Body |
| 6) 'T' Cushions      | 17) Snap Wrap                | 28) Bolted Flange Jaw Body   |
| 7) Hex. Head Screw   | 18) Socket Head Cap Screw    | 29) Hub 'SW'                 |
| 8) Inside Ring       | 19) Adapter Motor Side       | 30) Flange Jaw Body          |
| 9)Cushion            | 20) Adapter Pump Side        | 31) Shear Pin                |
| 10) Outside Ring     | 21) Jaw Body                 | 32) Circlip                  |
| 11) Adapter 1        | 22) SAE Flange – Engine Side | 33) Set Screw                |

## JAW-FLEX COUPLING

## FEATURES OF CONVERSION OF RRS-SW-L

#### A. RRS Type

- Consists of a SW Assembly, an Aluminium spacer with two SW kits. (The SW kit comprises of a SW ring, a Snapwrap & a set of screws & washers.)
- No need to stock all parts except spacer kits (a RRS spacer & a SW kit). Hence low inventory cost.
- Consists of two elastomeric members i.e. snapwraps, hence gives increased misalignment capability.
- Use of Aluminium spacer gives advantage of lightweight coupling & lower moment of inertia.

#### B. SW Type

- Consists of two hubs and a SW kit.
- L assembly can be converted into SW assembly by replacing spider from L assy. with SW kit.
- Only SW kit to be kept in stock. Hence low inventory cost.
- Replacement/inspection of snapwrap done without disturbing existing alignment. Hence less down time.

#### C. L Type

- Consists of two L hubs and a spider. Hence simple in construction.
- Tapped holes are provided on jaw OD, which helps to use same hubs for SW & RRS Assy.
- Every other spider arm is an idler arm and can be advanced to load carrier jaws. Hence it functions as a spare spider in every coupling.

#### **JAW-FLEX COUPLING**

#### FEATURES OF CONVERSION OF RRS-SW-L



# **AROFLEX**<sup>®</sup>

## JAW-FLEX COUPLING

#### STANDARD RATINGS FOR JAW-FLEX COUPLINGS

| Coupling | pling Ra | ted Torq | ue      |          | Rated | Power |       |
|----------|----------|----------|---------|----------|-------|-------|-------|
| Size     | Nm       | Kg-m     | Lbs-in. | @100 RPM |       | @1500 | ) RPM |
|          |          |          |         | kW       | HP    | kW    | HP    |
| 30       | 0.38     | 0.04     | 3       | 0.004    | 0.005 | 0.06  | 0.08  |
| 50       | 2.80     | 0.21     | 18      | 0.03     | 0.040 | 0.45  | 0.60  |
| 70       | 4.9      | 0.50     | 43      | 0.05     | 0.07  | 0.75  | 1.05  |
| 75       | 9.8      | 1.00     | 87      | 0.1      | 0.13  | 1.5   | 1.95  |
| 95       | 21.1     | 2.15     | 187     | 0.22     | 0.29  | 3.3   | 4.4   |
| 99       | 35.1     | 3.58     | 311     | 0.37     | 0.50  | 5.55  | 7.5   |
| 100      | 46.4     | 4.73     | 411     | 0.49     | 0.66  | 7.35  | 9.9   |
| 110      | 89       | 9.07     | 787     | 0.93     | 1.25  | 13.95 | 19    |
| 150      | 141      | 14.37    | 1248    | 1.49     | 2.00  | 22.35 | 30    |
| 190      | 190      | 19.37    | 1681    | 2.01     | 2.69  | 30.15 | 40    |
| 225      | 265      | 27.01    | 2345    | 2.76     | 3.70  | 41.4  | 56    |
| 226      | 327      | 32.31    | 2805    | 3.43     | 4.60  | 51.45 | 69    |
| 276      | 532      | 53.72    | 4663    | 5.6      | 7.51  | 84    | 113   |
| 280      | 782      | 79.71    | 6919    | 8.2      | 11    | 123   | 165   |
| 295      | 1279     | 130.38   | 11316   | 13.4     | 18    | 201   | 270   |
| 2955     | 2132     | 217.33   | 18863   | 22.4     | 30    | 336   | 450   |
| 300      | 3047     | 310.60   | 26959   | 31.9     | 43    | 478.5 | 645   |
| 350      | 4308     | 439.14   | 38116   | 45       | 60    | 675   | 900   |
| 3067     | 5338     | 544.14   | 47229   | 55.9     | 75    | 838.5 | 1125  |
| 3567     | 7124     | 726.20   | 63031   | 74.6     | 100   | 1119  | 1500  |
| 3667     | 9931     | 1012.33  | 87867   | 104      | 139   | 1560  | 2085  |
| 4067     | 14228    | 1450     | 125885  | 149      | 200   | 2235  | 3000  |
| 4567     | 19195    | 1957     | 169832  | 201      | 270   | 3015  | 4050  |
| 5069     | 22822    | 2326     | 201923  | 239      | 320   | 3585  | 4800  |
| 6069     | 33518    | 3417     | 296558  | 351      | 470   | 5265  | 7050  |
| 7069     | 46982    | 4789     | 415683  | 492      | 660   | 7380  | 9900  |
| 8069     | 58442    | 5957     | 517078  | 612      | 820   | 9180  | 12300 |
| 9011     | 67610    | 6892     | 598194  | 708      | 949   | 10620 | 14235 |

## JAW-FLEX COUPLING

## WEIGHT & MI. FOR L - TYPE JAW FLEX COUPLINGS

| COUPLING  | APPROX. | MI. in Kgm <sup>2</sup> (Approx.) |                          |  |
|-----------|---------|-----------------------------------|--------------------------|--|
| SIZE      | Wt. kg  | WR <sup>2</sup>                   | $GD^2$                   |  |
| L-030 SI  | 0.02    | 7.28 X 10 <sup>-8</sup>           | 2.912 X 10 <sup>-7</sup> |  |
| L-050 SI  | 0.12    | 1.21 X 10 <sup>-6</sup>           | 4.84 X 10 <sup>-6</sup>  |  |
| L-070 SI  | 0.26    | 4.67 X 10 <sup>-6</sup>           | 1.87 X 10 <sup>-5</sup>  |  |
| L-075 SI  | 0.44    | 1.19 X 10⁻⁵                       | 4.76 X 10 <sup>-5</sup>  |  |
| L-070 AL  | 0.12    | 2.14 X 10 <sup>-6</sup>           | 8.56 X 10 <sup>-6</sup>  |  |
| L-075 AL  | 0.19    | 5.34 X 10 <sup>-6</sup>           | 2.14 X 10 <sup>-5</sup>  |  |
| L-095 AL  | 0.31    | 1.15 X 10 <sup>-5</sup>           | 4.6 X 10 <sup>-5</sup>   |  |
| L-100 AL  | 0.61    | 3.13 X 10 <sup>-5</sup>           | 1.25 X 10 <sup>-4</sup>  |  |
| L-095 CI  | 0.75    | 2.88 X 10 <sup>-5</sup>           | 1.15 X 10 <sup>-4</sup>  |  |
| L-100 CI  | 1.50    | 7.67 X 10 <sup>-5</sup>           | 3.07 X 10 <sup>-4</sup>  |  |
| L-110 CI  | 3.20    | 2.77 X 10 <sup>-4</sup>           | 1.11 X 10 <sup>-3</sup>  |  |
| L-150 CI  | 3.90    | 4.19 X 10 <sup>-4</sup>           | 1.68 X 10⁻³              |  |
| L-190 CI  | 7.50    | 0.0120                            | 0.048                    |  |
| L-225 CI  | 10.50   | 0.0180                            | 0.072                    |  |
| L-226 CI  | 13.00   | 0.0280                            | 0.112                    |  |
| L-276 CI  | 19.00   | 0.0500                            | 0.2                      |  |
| L-280 CI  | 25.00   | 0.0960                            | 0.384                    |  |
| L-295 CI  | 44.00   | 0.2560                            | 1.024                    |  |
| L-2955 CI | 51.00   | 0.3020                            | 1.208                    |  |
| L-300 CI  | 58.00   | 0.3800                            | 1.52                     |  |
| L-350 CI  | 86.00   | 0.7620                            | 3.048                    |  |

Note: Weight & MI. are with Min. Bores.

.....Contd. On next page

## **AROFLEX**<sup>®</sup>

# JAW-FLEX COUPLING

## WEIGHT & MI. FOR SW, H, HR - TYPE JAW FLEX COUPLINGS

| COUPLING | APPROX. | MI. in Kgm <sup>2</sup> (Approx.) |                         |  |
|----------|---------|-----------------------------------|-------------------------|--|
| SIZE     | Wt. kg  | WR <sup>2</sup>                   | GD <sup>2</sup>         |  |
| SW-095   | 0.80    | 3.67 X 10 <sup>-4</sup>           | 1.59 X 10 <sup>-3</sup> |  |
| SW-100   | 1.58    | 8.73 X 10 <sup>-4</sup>           | 3.5 X 10 <sup>-3</sup>  |  |
| SW-110   | 3.31    | 3.02 X 10 <sup>-3</sup>           | 0.01208                 |  |
| SW-150   | 4.05    | 4.62 X 10 <sup>-3</sup>           | 0.01848                 |  |
| SW-190   | 7.70    | 0.0128                            | 0.0512                  |  |
| SW-225   | 10.70   | 0.0190                            | 0.076                   |  |
| SW-226   | 15.00   | 0.0300                            | 0.12                    |  |
| SW-276   | 21.00   | 0.0530                            | 2.12                    |  |
| SW-280   | 29.00   | 0.1020                            | 0.408                   |  |
| SW-295   | 48.00   | 0.2710                            | 1.084                   |  |
| SW-2955  | 59.00   | 0.3200                            | 1.28                    |  |
| SW-300   | 86.00   | 0.4100                            | 1.64                    |  |
| SW-350   | 132.00  | 0.8210                            | 3.284                   |  |
| H-3067   | 60.00   | 0.4080                            | 1.632                   |  |
| H-3567   | 79.00   | 0.6510                            | 2.604                   |  |
| H-3667   | 108.00  | 1.0350                            | 4.14                    |  |
| HR-4067  | 99.00   | 1.2410                            | 4.964                   |  |
| HR-4567  | 174.00  | 2.7180                            | 10.872                  |  |
| HR-5069  | 185.00  | 3.0850                            | 12.34                   |  |
| HR-6069  | 252.00  | 5.4870                            | 21.948                  |  |
| HR-7069  | 374.00  | 10.5720                           | 42.288                  |  |
| HR-8069  | 574.00  | 20.5760                           | 82.304                  |  |
| HR-9011  | 850.00  | 37.7900                           | 151.16                  |  |

## **AROFLEX**<sup>®</sup>

## JAW-FLEX COUPLING

#### WEIGHT & MI. FOR SWQ-TYPE JAW FLEX COUPLINGS

| COUPLING                | APPROX. | MI. in Kgm <sup>2</sup> (Approx.) |                 |  |
|-------------------------|---------|-----------------------------------|-----------------|--|
| SIZE                    | Wt. kg  | WR <sup>2</sup>                   | GD <sup>2</sup> |  |
| SWQ-095 (100)           | 2.31    | 0.0020                            | 0.008           |  |
| SWQ-095 (140)           | 2.93    | 0.0022                            | 0.0088          |  |
| SWQ-095 (180)           | 3.53    | 0.0024                            | 0.0096          |  |
| SWQ-100 (100)           | 3.52    | 0.0021                            | 0.0084          |  |
| SWQ-100 (140)           | 4.38    | 0.0027                            | 0.0108          |  |
| SWQ-100 (180)           | 5.24    | 0.0031                            | 0.0124          |  |
| SWQ-110 (100)           | 5.62    | 0.0053                            | 0.0212          |  |
| SWQ-110 (140)           | 7.06    | 0.0067                            | 0.0268          |  |
| SWQ-110 (180)           | 8.48    | 0.0083                            | 0.0332          |  |
| SWQ-150 (100)           | 7.95    | 0.0098                            | 0.0392          |  |
| SWQ-150 (140)           | 9.77    | 0.0122                            | 0.0488          |  |
| SWQ-150 (180)           | 11.57   | 0.0146                            | 0.0584          |  |
| SWQ-190 (100)           | 11.18   | 0.0191                            | 0.0764          |  |
| SWQ-190 (140)           | 13.72   | 0.0239                            | 0.0956          |  |
| SWQ-190 (180)           | 16.26   | 0.0289                            | 0.1156          |  |
| SWQ-225 (100)           | 14.65   | 0.0305                            | 0.122           |  |
| SWQ-225 (140)           | 17.73   | 0.0377                            | 0.1508          |  |
| SWQ-225 (180)           | 20.81   | 0.0449                            | 0.1796          |  |
| SWQ-226 (140)           | 22.50   | 0.0583                            | 0.2332          |  |
| SWQ-226 (180)           | 26.00   | 0.0681                            | 0.2724          |  |
| SWQ-276 (140)           | 27.75   | 0.0846                            | 0.3384          |  |
| SWQ-276 (180)           | 32.75   | 0.1016                            | 0.4064          |  |
| SWQ-280 (140)           | 35.00   | 0.1590                            | 0.636           |  |
| SWQ-280 (180)           | 42.00   | 0.1968                            | 0.7872          |  |
| SWQ-295 & 2955<br>(140) | 57.60   | 0.3900                            | 1.56            |  |
| SWQ-295 & 2955<br>(180) | 68.50   | 0.4700                            | 1.88            |  |
| SWQ-300 (140)           | 69.30   | 0.5300                            | 2.12            |  |
| SWQ-300 (180)           | 81.00   | 0.6400                            | 2.56            |  |
| SWQ-350 (140)           | 101.50  | 1.0670                            | 4.268           |  |
| SWQ-350 (180)           | 119.30  | 1.3070                            | 5.228           |  |

## JAW-FLEX COUPLING

#### WEIGHT & MI. FOR RRS-TYPE JAW FLEX COUPLINGS

| COUPLING      | APPROX. | MI. in Kgm <sup>2</sup> (Approx.) |                         |  |
|---------------|---------|-----------------------------------|-------------------------|--|
| SIZE          | Wt. kg  | WR <sup>2</sup>                   | $GD^2$                  |  |
| RRS-095 (90)  | 1.1     | 4.5 X 10 <sup>-4</sup>            | 1.8 x 10 <sup>-3</sup>  |  |
| RRS-095 (100) | 1.13    | 4.6 X 10 <sup>-4</sup>            | 1.84 x 10 <sup>-3</sup> |  |
| RRS-095 (140) | 1.3     | 5.1 X 10 <sup>-4</sup>            | 2.04 x 10 <sup>-3</sup> |  |
| RRS-100 (90)  | 2.17    | 1.34 X 10 <sup>-3</sup>           | 5.36 x 10 <sup>-3</sup> |  |
| RRS-100 (100) | 2.2     | 1.37 X 10 <sup>-3</sup>           | 5.48 x 10 <sup>-3</sup> |  |
| RRS-100 (140) | 2.38    | 1.46 X 10⁻³                       | 5.84 x 10 <sup>-3</sup> |  |
| RRS-110 (90)  | 3.93    | 3.8 X 10 <sup>-3</sup>            | 0.0154                  |  |
| RRS-110 (100) | 4.02    | 3.92 X 10⁻³                       | 0.0157                  |  |
| RRS-110 (140) | 4.4     | 4.24 X 10 <sup>-3</sup>           | 0.0169                  |  |
| RRS-150 (90)  | 4.97    | 6.25 X 10 <sup>-3</sup>           | 0.025                   |  |
| RRS-150 (100) | 5.0     | 6.18 X 10 <sup>-3</sup>           | 0.0247                  |  |
| RRS-150 (140) | 5.3     | 6.5 X 10 <sup>-3</sup>            | 0.026                   |  |
| RRS-190 (90)  | 9.0     | 0.015                             | 0.06                    |  |
| RRS-190 (100) | 9.2     | 0.016                             | 0.064                   |  |
| RRS-190 (140) | 9.7     | 0.017                             | 0.068                   |  |
| RRS-225 (90)  | 12.2    | 0.024                             | 0.96                    |  |
| RRS-225 (100) | 12.4    | 0.025                             | 0.1                     |  |
| RRS-225 (140) | 12.9    | 0.026                             | 0.104                   |  |
| RRS-226 (100) | 15.6    | 0.037                             | 0.148                   |  |
| RRS-226 (140) | 16.4    | 0.039                             | 0.156                   |  |
| RRS-226 (180) | 17.1    | 0.041                             | 0.164                   |  |

## JAW-FLEX COUPLING

#### WEIGHT & MI. FOR HQ, SWS - TYPE JAW FLEX COUPLINGS

|                |         | ML in $Kam^2$ (Approx) |        |  |
|----------------|---------|------------------------|--------|--|
|                |         |                        |        |  |
| SIZE           | VVt. Kg | WR-                    | GD     |  |
| HQ-3067 (140)  | 71.00   | 0.5460                 | 2.184  |  |
| HQ-3067 (180)  | 80.00   | 0.6480                 | 2.592  |  |
| HQ-3567 (140)  | 88.00   | 0.8190                 | 3.276  |  |
| HQ-3567 (180)  | 100.00  | 0.9710                 | 3.884  |  |
| HQ-3667 (180)  | 109.00  | 1.2130                 | 4.852  |  |
| HQ-3667 (250)  | 124.00  | 1.4110                 | 5.644  |  |
| HQ-4067 (180)  | 167.00  | 2.2950                 | 9.18   |  |
| HQ-4067 (250)  | 204.00  | 2.9100                 | 11.64  |  |
| HQ-4567 (180)  | 293.00  | 4.9680                 | 19.872 |  |
| HQ-4567 (250)  | 336.00  | 5.3140                 | 21.256 |  |
| HQ-5069 (180)  | 298.00  | 5.4950                 | 21.98  |  |
| HQ-5069 (250)  | 350.00  | 6.5600                 | 26.24  |  |
| HQ-6069 (180)  | 306.00  | 8.7500                 | 35     |  |
| HQ-6069 (250)  | 440.00  | 10.5800                | 42.32  |  |
| HQ-7069 (250)  | 658.00  | 21.0500                | 84.2   |  |
| SWS-226 (140)  | 17.40   | 0.0400                 | 0.16   |  |
| SWS-226 (180)  | 18.00   | 0.0400                 | 0.16   |  |
| SWS-276 (140)  | 22.50   | 0.0570                 | 0.228  |  |
| SWS-276 (180)  | 23.10   | 0.0580                 | 0.232  |  |
| SWS-280 (140)  | 33.40   | 0.1320                 | 0.528  |  |
| SWS-280 (180)  | 34.30   | 0.1350                 | 0.54   |  |
| SWS-295 (140)  | 56.90   | 0.3460                 | 1.384  |  |
| SWS-295 (180)  | 58.60   | 0.3540                 | 1.416  |  |
| SWS-2955 (140) | 59.30   | 0.3560                 | 1.424  |  |
| SWS-2955 (180) | 60.90   | 0.3640                 | 1.456  |  |
| SWS-300 (140)  | 74.90   | 0.5150                 | 2.06   |  |
| SWS-300 (180)  | 77.10   | 0.5300                 | 2.12   |  |
| SWS-350 (140)  | 98.00   | 0.6800                 | 2.72   |  |
| SWS-350 (180)  | 101.00  | 0.6900                 | 2.76   |  |

Note: Weight & MI. are with Min. Bores.

.....Contd. On next page

## JAW-FLEX COUPLING

#### WEIGHT & MI. FOR SWSF - TYPE JAW FLEX COUPLINGS

| COUPLING        | APPROX. | MI. in Kgm <sup>2</sup> (Approx.) |                 |
|-----------------|---------|-----------------------------------|-----------------|
| SIZE            | Wt. kg  | WR <sup>2</sup>                   | GD <sup>2</sup> |
| SWSF W/O FLANGE |         |                                   |                 |
| SWSF-226 (140)  | 12.50   | 0.0290                            | 0.116           |
| SWSF-226 (180)  | 13.10   | 0.0300                            | 0.12            |
| SWSF-276 (140)  | 15.70   | 0.0400                            | 0.16            |
| SWSF-276 (180)  | 16.30   | 0.0410                            | 0.164           |
| SWSF-280 (140)  | 23.90   | 0.1000                            | 0.4             |
| SWSF-280 (180)  | 24.80   | 0.1030                            | 0.412           |
| SWSF-295 (140)  | 42.60   | 0.2700                            | 1.08            |
| SWSF-295 (180)  | 44.20   | 0.2770                            | 1.108           |
| SWSF-2955 (140) | 43.80   | 0.2800                            | 1.12            |
| SWSF-2955 (180) | 45.40   | 0.2850                            | 1.14            |
| SWSF-300 (140)  | 51.70   | 0.3820                            | 1.528           |
| SWSF-300 (180)  | 54.00   | 0.3900                            | 1.56            |
| SWSF-350 (140)  | 71.60   | 0.4540                            | 1.816           |
| SWSF-350 (180)  | 73.70   | 0.4640                            | 1.856           |

#### JAW-FLEX COUPLING

#### APPLICATIONS OF JAW-FLEX COUPLING

JAW-FLEX couplings are suitable for general engineering applications requiring reliable power transmission, even under conditions of shaft misalignments, which are often unavoidable.

Typical applications of JAW-FLEX couplings are:

Agitators **Barge Haul Puller** Blowers Brew Kettles (distiling) Car Dumpers **Card Machine** Compressors Cookers (Brewing, Distiling) Crushers Dynamometer Fans Filter.Press-oil Hammer Mills Laundry Washers Machine Tools Mills Paper Mills Pug Mill **Rubber Machinery** Shredders Stokers **Textile Machinery** Windlass

Band Resaw (Lumber) **Beaters Bottling Machinery** Can Filling Mach. Car Pullers Chiller (Oil) Conveyors **Cranes & Hoist** Dredges **Evaporators** Feeders Generators **Kilns** Lumber Machinery Metal Forming Machines **Mixers Printing Presses** Pumps Screens **Steering Gears** Suction Roll (Paper) **Tumbling Barrels** Woodworking Machinery

#### JAW-FLEX COUPLING

#### HOW TO SELECT JAW-FLEX COUPLING

While selecting the coupling, first choose the type, which is based on application details like -

- a) Type of driver & driven equipment
- b) Type of load
- c) Misalignment, temperature
- d) Space limitations
- e) Linear & torsional vibrations
- f) Chemical or oil exposure

Then select the size of coupling for which information required is as stated below.

<u>Requirements</u>

Application: Driver -

Driven -

Application Rating : Power(kW) -

Speed (rpm) -

Shaft Diameter: Drive M/c - Driven M/c -

Distance between shaft ends (DBSE) if reqd.:

Service Factor (S.F.) required/recommended:

#### Selection Procedure

(a) Service Factor

Determine appropriate SERVICE FACTOR from table A if not given as above with the application details.

(b) Design Power

Multiply running power of driven machinery by the service factor. This gives DESIGN POWER, which is used as a basis for coupling selection.

#### (c) Coupling Size

Refer to rating table for your required coupling size and read from the appropriate speed column until a power equal to or greater than the DESIGN POWER is found.

#### JAW-FLEX COUPLING

(d) Bore size

Refer respective coupling dimensional table to check that the required bores can be accommodated. If bore size of selected coupling can't accommodate the shaft size, then go for next coupling size where shaft size can be accommodated.

(e) While selecting coupling for high-speed application, check -

Peripheral speed =  $\frac{\pi DN}{60}$  m/s

Where D = Max. diameter of coupling in meters N = RPM

If peripheral speed  $\leq$  30 m/s > 30  $\leq$  60 m/s

use Cast Iron material use Cast Steel material

(f) Collect the following information while selecting,

1.Drum type Jaw-flex coupling

\* Drum diameter & width

\* Drum location i.e. distance of drum centre from any one end of coupling

2. Flange type Jaw-flex coupling

Get SAE size of flange. If not then collect -

- \* Flange outside diameter & thickness
- \* No. of holes, hole diameter and PCD

\* Spacing of holes on flange

3. Shear Pin type Jaw-flex coupling \* Braking torque required.

## 

#### JAW-FLEX COUPLING

#### TYPICAL SERVICE FACTORS

Determination of service factors depends on torque fluctuations, duration of operation, misalignment, type of application, rotating speed, no. of start-stops, no. of load/speed reversals, etc.

From experience, typical service factors recommended for different applications are:

|                                                                                                                                                                                                                                                                                                                                                                                                | TYPE OF DRIVING UNIT             |                                                                    |                                                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------|-------------------------------------------------|--|
| DRIVEN MACHINE CLASS                                                                                                                                                                                                                                                                                                                                                                           | Electric motor,<br>steam turbine | Multi cylinder<br>IC engine or<br>steam engine or<br>water turbine | Single cylinder<br>IC engine or<br>steam engine |  |
| <u>UNIFORM</u><br>Agitators, Brewing machinery, Centrifugal<br>Blowers, Conveyors, Centrifugal fans and<br>pumps, Generators, Sewage disposal<br>equipments, Evaporators, Feeders, Textile<br>machines, Wood working machines.                                                                                                                                                                 | 1.00                             | 1.25                                                               | 1.50                                            |  |
| <u>MODERATE SHOCK</u><br>Clay working machinery, Crane Hoists,<br>Laundry machinery, Machine Tools, Rotary<br>mills, Paper mill machinery, Non-uniformly<br>loaded centrifugal pumps, Rotary screens,<br>Centrifugal compressors, Shredders, Printing<br>presses, Oil industry, Mixers, Food industry,<br>Beaters, Bucket elevators, Gear pumps, Wood<br>working machinery, Textile machinery. | 1.25                             | 1.50                                                               | 1.75                                            |  |
| HEAVY SHOCK<br>Reciprocating conveyors, Crushers, Shakers,<br>Metal mills, Rubber machinery (Banbury mixers<br>& mills), Reciprocating compressors, Welding<br>sets, Freight & passenger elevators, Cooling<br>tower fans, Hammer mills, Reciprocating<br>pumps, Vibrating screens, Winches, Wire<br>drawing machines.                                                                         | 1.75                             | 2.00                                                               | 2.25                                            |  |

#### SERVICE FACTOR TABLE A

#### JAW-FLEX COUPLING

#### FINISH BORE & KEYWAY PROCEDURE

- AROFLEX couplings are supplied with pilot bore unless asked for finish bore. It should be bored to reqd. finish bore size by taking the reference of the outside diameter (OD) of coupling i.e. turn bore concentrically with respect (true) to the coupling OD & not the hub dia. (Refer fig. A)
- 2. Clamp the hub OD on lathe and true the coupling OD. Ensure finish bore concentricity w.r.t. coupling OD is better than 0.1mm.
- 3. Unless specified, std. tolerances provided for FB & keyway is H7 and Js9 respectively.
- 4. Use dial bore gauge or plug gauges for respective size of bore. (If plug gauge is used then ensure that Go end of gauge will pass straight way throughout bore length.)

#### **ATTENTION** The maximum bore capacity as specified should not be exceeded.

- 5. Make chamfer of reqd. size on both sides of bore.
- 6. Keyway to be done on slotting m/c. or broaching m/c. Mark the keyway centre line such that key should come in between two holes in Jaw-flex coupling flange. (Refer fig. B)
- 7. Keyway shift from marked keyway centre line should be within 0.1 mm.
- 8. A tapped hole is provided on the hub at keyway location to hold (lock) the key in shaft-hub with a set screw of suitable size. This tapping is generally provided at midpoint of the length through bore distance. If it is not possible to use set screw at midpoint, suitable distance nearer to midpoint of the length through bore is provided. (Refer fig. C)
  - 1) Length of the set screw to be used on key for tightening should be of length that will cover the threaded length of hole.
    - 2) Diameter of set screw should be equal to or less than keyway width.
- 9. Use appropriate set screw to ensure effective locking of the key.

For fitting couplings on splined shaft / taper shaft, please consult AROFLEX.



Non observance of these instructions may lead to failure of the coupling.

## AROFLEX<sup>®</sup>

#### **JAW-FLEX COUPLING**

#### FINISH BORE & KEYWAY PROCEDURE



### JAW-FLEX COUPLING

#### FIT TOLERANCE GUIDE LINES FOR BORES WITH PARALLEL KEYS

|                  | Bore        |          |                  |                 |  |
|------------------|-------------|----------|------------------|-----------------|--|
| Required Fit     | Above<br>mm | To<br>mm | Shaft Tolerances | Bore Tolerances |  |
| Shaft tolerance  |             | 25       | k6               |                 |  |
| as per AROFLEX   | 25          | 100      | m6               | H7              |  |
|                  | 100         |          | n6               |                 |  |
| Shaft tolerance  |             | 50       | k6               | H7              |  |
| as per DIN 740/1 | 50          |          | m6               |                 |  |
| Shaft with       |             | 50       | h6               | K7              |  |
| unified system   | 50          |          | 10               | M8              |  |
|                  | all         |          | h8               | N7              |  |

ATTENTION

It is necessary to select required fit in order to -

1) Keep low backlash between hub & shaft.

2) Keep the hub stress under permissible range.



If these instructions on selection of fit are not followed there is danger of bursting of the coupling.

There is a danger to human life due to broken parts flying around.



### JAW-FLEX COUPLING

#### **INSTALLATION & ASSEMBLY INSTRUCTIONS**

#### (A) BEFORE INSTALLATION

- a. After removing the coupling from packing, thoroughly inspect to ensure that they is/are as ordered & there no is transit damage or loss.
- b. Remove protective coating/lubricant from bores & keyways. Remove all the bolts & nuts and dismantle the assembly. (In RRS, SWQ, HQ, HR, SWS)
- c. Follow instruction given on page no. 26, if couplings are pilot bored. (Fig. 1)

#### Fig. 1



#### (B) MOUNTING PROCEDURE

Mount hubs/adapters (\*) on their respective shafts with keys such that the shaft ends are flush with inner face of the adapter & tighten the set screw over the keys. Bring both the coupling hubs/adapters (along with equipments) closer so as to maintain gap `G' as shown in fig. 2a.

<u>L type couplings</u>: insert the spider in one of the hubs. In case of Non-spacer couplings the distance between shat end (DBSE) is equal to the total length of the coupling less length through bore of both the hubs. In case of spacer type of couplings, the spacer length is normally equal to the distance between shaft ends of the equipments. Refer fig.2b. Dimension 'G' is shown in table 'C2' (page 36).

\* HUB - Coupling half with jaws.

\* ADAPTER - Coupling half without jaws.

.....Contd. on next page

# AROFLEX **JAW-FLEX COUPLING** (a) IN CASE OF NON SPACER COUPLING (FIG. 2a) GAP 'G' (STD). L - TYPE(b) IN CASE OF SPACER COUPLING (FIG. 2b) DBSE

For normal applications the shaft ends should be flush with inner face of hub/adapter, they can protrude beyond the inner face of hub/adapter or remain inside if reqd. but sufficient gap should be allowed to take care of end float of both shafts (i.e. axial misalignment)

Ensure that the effective length of key is sufficient to transmit the rated torque of the coupling.

<u>H, HR & HQ couplings</u>: insert the inner ring before bringing the equipments for to their final mounting positions. In case of couplings with outer ring (i.e. SW, SWS, RRS, SWQ, H, HR & HQ) mount the outer ring on one of the adapters and slide it towards the nearest equipment.

#### (C) ALIGNMENT PROCEDURE

Alignment procedure is given separately for each type of alignment for simplicity. However combination of all 3 types of misalignments may be present at the same time.

..... Contd. on next page



- Using straight edge (fig 3a): Align straight edge on OD of one half measure gap 'X' at 4 places 90° apart without rotating shafts. Gap 'X' should be less than the allowable initial parallel misalignment (P) mentioned in Table 'C1' (page 35).
- Using dial gauge (fig 3b): Fix dial gauge on the hub of one of the half & set plunger on the OD of another half. Rotate the coupling slowly to one complete revolution by taking dial gauge reading at 4 places 90° apart. The parallel misalignment is half of the Total Indicated Reading (TIR) of dial gauge which should not exceed the value 'P' given in Table 'C1'.
- Follow the same procedure in case of spacer coupling as shown in fig. 3c.



(fig. 3c)



- Using feeler gauge (fig 4a) : Measure gap 'G' at 4 places 90° apart without rotating shafts. The difference in maximum & minimum gap will be the Total Indicated Reading (TIR), which will be the angular misalignment present (Refer Table 'C1' for allowable TIR values in mm).
- The values for deviation in standard gap i.e. angular misalignment should be within the limits as shown in table 'C1' on page no 35.
- Using dial gauge (fig 4b) : Fix the dial gauge on hub OD of one of the halves & set plunger on the face of the another half as shown. Rotate the coupling slowly to one complete revolution by taking dial readings at 4 intervals 90° apart. The Total Indicated Readings (TIR) will be the angular misalignment (Refer Table 'C1').
- Follow the same procedure in case of spacer coupling as shown in fig. 4c.



#### JAW-FLEX COUPLING

III) CHECKING AXIAL MISALIGNMENT (End-Float)

- Deviation from standard DBSE due to axial movement of shaft is defined as axial misalignment (End float). [For normal applications the shaft ends should be flushed with inner face of hub/adapter. In some special cases the shaft ends may protrude beyond the inner face of hub/adapter or may remain inside if required.]
- The distance between two faces of coupling halves is to be maintained as specified. The variation in this distance should not exceed the permissible initial axial misalignment given in table 'C1'. (Refer Fig. 2a, 2b)
- Repeat the above steps until the required permissible initial misalignment limits are achieved. Tighten foundation/base frame bolts & ensure the tightening of set screws over keys.

ATTENTION The misalignment capabilities shown in drawings & product literature allow for dynamic conditions & variations. For optimum service from the coupling, the installation misalignment (initial misalignment) should not exceed 25% of the maximum allowable misalignment limits. Allowance should be made for any anticipated movements, which will occur during operation (e.g. thermal movements)

> IMPORTANT: The necessity for shields & guards varies with individuals installations. The owner or user must provide the required safety guards. Safety guards or shields are not furnished by us with this equipments.

#### **JAW-FLEX COUPLING**

#### <u>TABLE **C1**</u>

| SR | COUPLING | PERMISSIBLE INITIAL MISALIGNMENT |                 |        | *          |         |
|----|----------|----------------------------------|-----------------|--------|------------|---------|
| NO | SIZE     | Angular                          |                 | Axial  | Parallel / | GAP 'G' |
|    |          | Degree                           | Total Indicated | mm     | Radial     | (mm)    |
|    |          |                                  | Reading (TIR)   |        | (mm)       |         |
|    |          |                                  | (mm)            |        | P'         |         |
| 1  | 030      | 0.25°                            | 0.07            | ± 0.25 | 0.1        | 1       |
| 2  | 050      | 0.25°                            | 0.110           | ± 0.25 | 0.1        | 1       |
| 3  | 070      | 0.25°                            | 0.157           | ± 0.5  | 0.1        | 2       |
| 4  | 075      | 0.25°                            | 0.194           | ± 0.5  | 0.1        | 2       |
| 5  | 095      | 0.25°                            | 0.235           | ± 0.5  | 0.1        | 2       |
| 6  | 099      | 0.25°                            | 0.283           | ± 0.5  | 0.1        | 2       |
| 7  | 100      | 0.25°                            | 0.283           | ± 0.5  | 0.1        | 2       |
| 8  | 110      | 0.25°                            | 0.370           | ± 0.75 | 0.1        | 3       |
| 9  | 150      | 0.25°                            | 0.419           | ± 0.75 | 0.1        | 3       |
| 10 | 190      | 0.25°                            | 0.502           | ± 0.75 | 0.1        | 3       |
| 11 | 225      | 0.25°                            | 0.554           | ± 0.75 | 0.1        | 3       |
| 12 | 226      | 0.25°                            | 0.598           | ± 0.75 | 0.1        | 3       |
| 13 | 276      | 0.25°                            | 0.685           | ± 0.75 | 0.1        | 3       |
| 14 | 280      | 0.25°                            | 0.837           | ± 0.75 | 0.1        | 3       |
| 15 | 295      | 0.25°                            | 1.034           | ± 0.75 | 0.1        | 3       |
| 16 | 2955     | 0.25°                            | 1.034           | ± 0.75 | 0.1        | 3       |
| 17 | 300      | 0.25°                            | 1.108           | ± 0.75 | 0.1        | 3       |
| 18 | 350      | 0.25°                            | 1.330           | ± 0.75 | 0.1        | 3       |
| 19 | 3067     | 0.25°                            | 1.108           | ± 0.75 | 0.1        | 3       |
| 20 | 3567     | 0.25°                            | 1.221           | ± 0.75 | 0.1        | 3       |
| 21 | 3667     | 0.25°                            | 1.330           | ± 0.75 | 0.1        | 3       |
| 22 | 4067     | 0.25°                            | 1.475           | ± 0.75 | 0.1        | 3       |
| 23 | 4567     | 0.25°                            | 1.702           | ± 1.5  | 0.1        | 3       |
| 24 | 5069     | 0.25°                            | 1.745           | ± 1.5  | 0.1        | 6       |
| 25 | 6069     | 0.25°                            | 1.942           | ± 1.5  | 0.1        | 6       |
| 26 | 7069     | 0.25°                            | 2.216           | ± 1.5  | 0.1        | 6       |
| 27 | 8069     | 0.25°                            | 2.508           | ± 1.5  | 0.1        | 6       |
| 28 | 9011     | 0.25°                            | 2.770           | ± 1.5  | 0.1        | 6       |

• In case of RRS couplings, double the values of axial & angular misalignment for corresponding size.

• For RRS (sizes from 095 to 226) Parallel misalignment = 0.005 mm per mm of DBSE

\* Gap 'G' in the above table is when angular and axial misalignments are zero.

Note: For permissible maximum misalignments, refer table 'C2'.

ATTENTION

The permissible initial misalignments given in the above table must not be exceeded during installation.

The permissible initial misalignments given in the above table – parallel, axial and angular must not occur simultaneously.

#### **JAW-FLEX COUPLING**

#### TABLE C2

| SR | COUPLING | PERMISSIBLE MAXIMUM MISALIGNMENT |                                         |           | *                 |         |
|----|----------|----------------------------------|-----------------------------------------|-----------|-------------------|---------|
| NO | SIZE     | Angular                          |                                         | Axial     | Parallel /        | GAP 'G' |
|    |          | Degree                           | Total Indicated<br>Reading<br>(TIR)(mm) | (mm)      | Radial<br>(mm)'P' | (mm)    |
| 1  | 030      | 1°                               | 0.27                                    | ±1        | 0.4               | 1       |
| 2  | 050      | 1°                               | 0.40                                    | ±1        | 0.4               | 1       |
| 3  | 070      | 1°                               | 0.6                                     | <u>+2</u> | 0.4               | 2       |
| 4  | 075      | 1°                               | 0.7                                     | <u>+2</u> | 0.4               | 2       |
| 5  | 095      | 1°                               | 0.9                                     | ±2        | 0.4               | 2       |
| 6  | 099      | 1°                               | 1.1                                     | ±2        | 0.4               | 2       |
| 7  | 100      | 1°                               | 1.1                                     | <u>+2</u> | 0.4               | 2       |
| 8  | 110      | 1°                               | 1.4                                     | ±3        | 0.4               | 3       |
| 9  | 150      | 1°                               | 1.6                                     | ±3        | 0.4               | 3       |
| 10 | 190      | 1°                               | 2.0                                     | ±3        | 0.4               | 3       |
| 11 | 225      | 1°                               | 2.2                                     | ±3        | 0.4               | 3       |
| 12 | 226      | 1°                               | 2.4                                     | ±3        | 0.4               | 3       |
| 13 | 276      | 1°                               | 2.7                                     | ±3        | 0.4               | 3       |
| 14 | 280      | 1°                               | 3.3                                     | ±3        | 0.4               | 3       |
| 15 | 295      | 1°                               | 4.1                                     | ±3        | 0.4               | 3       |
| 16 | 2955     | 1°                               | 4.1                                     | ±3        | 0.4               | 3       |
| 17 | 300      | 1°                               | 4.4                                     | ±3        | 0.4               | 3       |
| 18 | 350      | 1°                               | 5.3                                     | ±3        | 0.4               | 3       |
| 19 | 3067     | 1°                               | 4.4                                     | ±3        | 0.4               | 3       |
| 20 | 3567     | 1°                               | 4.9                                     | ±3        | 0.4               | 3       |
| 21 | 3667     | 1°                               | 5.3                                     | ±3        | 0.4               | 3       |
| 22 | 4067     | 1°                               | 5.9                                     | ±3        | 0.4               | 3       |
| 23 | 4567     | 1°                               | 6.8                                     | ±3        | 0.4               | 3       |
| 24 | 5069     | 1°                               | 7.0                                     | ±6        | 0.4               | 6       |
| 25 | 6069     | 1°                               | 7.7                                     | ±6        | 0.4               | 6       |
| 26 | 7069     | 1°                               | 8.8                                     |           |                   |         |
| 27 | 8069     | 1°                               | 10.0                                    | ±6        | 0.4               | 6       |
| 28 | 9011     | 1°                               | 11.0                                    | ±6        | 0.4               | 6       |

• In case of RRS couplings, double the values of axial & angular misalignment for corresponding size.

• For RRS (from sizes 095 to 226) Parallel misalignment = 0.02 mm per mm of DBSE.

• Gap 'G' in above tables is when angular and axial misalignments are zero.

Important : At the time of installation, INITIAL misalignments should not exceed 25% or permissible maximum misalignments.

: For permissible initial misalignments, refer table 'C1'.

ATTENTION

Note

The maximum permissible misalignments given in the above table must not be exceeded during operation.

The maximum permissible misalignments given in the above table – parallel, axial and angular must not occur simultaneously.

#### JAW-FLEX COUPLING

#### (D) ASSEMBLY PROCEDURE

After ensuring that the equipments are aligned properly, follow the instructions as given below for assembly of couplings.

#### a) For L

For L type couplings as the spider has been already inserted in one of the hubs while aligning the equipments, no separate procedure is required to be followed.

#### b) For SW, H

Wrap the snap wrap(s)/insert cushions of required size in the space between the jaws. Then slide the outer ring over the snap wrap(s)/cushions & fix it to the hub with the help of screws/bolts provided along with the washers.

#### c) For SWQ, HR & HQ

Take the spacer jaw body assembly. with the inside & outside rings without elastomeric elements. Insert spacer assembly. in the steps provided in the adapters. Tighten the bolts with the torque given in table 'B' (page 39) for tightening torque. Wrap the snap wrap(s)/insert cushions of required size in the space between jaws. Then slide the outer ring over the snap wrap(s)/cushions accordingly & fix it to the hub with the help of screws/bolts alongwith the washers.

#### d) For RRS

Insert the spacer between RRS hubs mounted earlier as explained in mounting procedure. Wrap/insert the snapwrap/'T' cushions in the space between jaws. Then slide the outer ring over the snap wrap(s)/T-cushions & fix it to the hub with the help of screws/bolts along with washers.

#### e) For SWS

Insert jaw body over the pump side adapter. Assemble one half of the jaw body with the pump side adapter with the help of bolts. Slide another jaw body over pump side adapter. Insert the space alongwith outer ring between motor side adapter & jaw body as shown in fig. A on page no. 38. Locate the spacer in steps provided on motor side adapter and jaw body and assemble each other with the help of bolts. Then insert the cushions between jaws of jaw bodies & fix the outer ring over the cushions.

#### JAW-FLEX COUPLING

IMPORTANT: If the coupling is supplied with dynamic balancing, ensure that the match marks (e.g. nos., alphabets) are in straight line & unidirectional before bolting the spacer assembly with both the adapters. Same is applicable to non-spacer couplings where match marks on hubs / adapters have to be matched.

The necessity of shields and guards varies with individual installations. The owner or user must provide the required safety guards. Safety guards or shields are not in our scope of supply.





#### JAW-FLEX COUPLING

#### TABLE B

## **RECOMMENDED TIGHTENING TORQUE**

| SR | COUPLING | BOLI        | IIGHIENING  |
|----|----------|-------------|-------------|
| NO | SIZE     | SIZE        | TORQUE (Nm) |
| 1  | 095      | M6 X 1P     | 5           |
| 2  | 100      | M6 X 1P     | 5           |
| 3  | 110      | M8 X 1.25P  | 12.5        |
| 4  | 150      | M10 X 1.5P  | 25          |
| 5  | 190      | M10 X 1.5P  | 25          |
| 6  | 225      | M12 X 1.75P | 44          |
| 7  | 226      | M12 X 1.75P | 44          |
| 8  | 276      | M12 X 1.75P | 44          |
| 9  | 280      | M14 X 1.75P | 70          |
| 10 | 295      | M16 X 2P    | 70          |
| 11 | 2955     | M16 X 2P    | 107         |
| 12 | 300      | M20 X 2.5P  | 215         |
| 13 | 350      | M20 X 2.5P  | 215         |
| 14 | 3067     | M20 X 2.5P  | 215         |
| 15 | 3567     | M22 X 2.5P  | 293         |
| 16 | 3667     | M22 X 2.5P  | 293         |
| 17 | 4067     | M24 X 3P    | 372         |
| 18 | 4567     | M24 X 3P    | 372         |
| 19 | 5069     | M24 X 3P    | 372         |
| 20 | 6069     | M24 X 3P    | 372         |
| 21 | 7069     | M24 X 3P    | 372         |
| 22 | 4067     | M16 X 2P    | 107         |
| 23 | 4567     | M16 X 2P    | 107         |
| 24 | 5069     | M16 X 2P    | 107         |
| 25 | 6069     | M16 X 2P    | 107         |
| 26 | 7069     | M16 X 2P    | 107         |
| 27 | 8069     | M20 X 2.5P  | 215         |
| 28 | 9011     | M20 X 2.5P  | 215         |

Note: These tightening torques are for the bolts engaging with the spacer & driving/driven equipments.



The necessity of shields and guards varies with individual installations. The owner or user must provide the required safety guards. Safety guards or shields are not in our scope of supply.

ATTENTION

IF THE SUPPLIED COUPLING IS DYNAMICALLY BALANCED. ENSURE THAT THE MATCH MARKS (e.g. ALPHABETS) ARE IN STRAIGHT LINE & UNIDIRECTIONAL BEFORE BOLTING BOTH THE HUBS

ATTENTION Tightening torque must be observed as given above & tightening of the opposite bolts to be done.

#### JAW-FLEX COUPLING

INSTALLATION & REMOVAL OF HUBS/ADAPTERS WITH TAPER BUSHES.





Sizes - 1008 to 3030

Size - 3525 to 5050

A) TO ASSEMBLE

1. Clean and de-grease the bore and tapered surfaces of the bush and the tapered bore of the Hubs/Adapters. Insert the bush in the coupling hubs/adapters and line up the holes (half threaded holes must line up with half straight holes)

2. Lightly oil the grub screws (bush size 1008 to 3030) or the cap screws (bush size 3525 to 5050) and screw them loosely in holes threaded in hub/adapter shown thus  $\mathbf{O}$  in diagram, do not tighten yet.

3. Clean and de-grease the shaft. Fit the coupling hub/adapter with taper bush on shaft and locate in desired position.

4. When using a key it should first be fitted in the shaft keyway. There should be a top clearance between the key and the keyway in the bore.

5. Using a hexagon socket wrench, gradually tighten the grub/cap screws in accordance with the torques as listed in the Table 'D' of screw tightening torques.

6. After running the drive under load about half to one hour check whether screws are loosened. If found loose take appropriate steps.

7. In order to eliminate the ingress of dirt, fill all empty holes with grease.

#### JAW-FLEX COUPLING

#### B) FOR REMOVAL

1. Slacken all screws. Remove one or two according to number of jacking off holes shown thus ● in the diagram. Insert these screws in jacking off holes.

2. Tighten screw(s) uniformly and alternately until the bush is loose in the Hubs/Adapters and coupling is free on the shaft.

3. Remove coupling assembly from the shaft.

#### <u>TABLE 'D'</u>

| Taper Bush   | Screw                    | Screw     |     |
|--------------|--------------------------|-----------|-----|
| Size         | tightening<br>Torque(Nm] | Size      | Qty |
| 1008<br>1108 | 5.6                      | 1/4" BSW  | 2   |
| 1210<br>1215 | 20                       | 3/8" BSW  | 2   |
| 1610<br>1615 | 20                       | 3/8" BSW  | 2   |
| 2012<br>2017 | 31                       | 7/16" BSW | 2   |
| 2517<br>2525 | 48                       | 1/2" BSW  | 2   |
| 3020<br>3030 | 90                       | 5/8" BSW  | 2   |
| 3525<br>3535 | 112                      | 1/2" BSW  | 3   |
| 4030<br>4040 | 170                      | 5/8" BSW  | 3   |
| 4545         | 192                      | 3/4" BSW  | 3   |
| 5050         | 271                      | 7/8" BSW  | 3   |